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This paper examines the possible thickening of an initially sharp sonic boom 
by the turbulence it encounters in passing to the ground. Three apparently dif- 
ferent viewpoints, all indicating substantial thickening, are shown to be actu- 
ally identical and to give an irrelevant upper bound on wave thickness. All three 
approaches describe only the apparent mean diffusion induced by random 
convection of a sharp wave about its nominal position. Although a wave-front 
folding mechanism ultimately accounts for an apparent thickening as individual 
rays are weakened and tangled by turbulence, this process is too slow to be effec- 
tive in the practical boom situation. The paper then considers what linear thicken- 
ing of a wave packet results from propagation through atmospheric turbulence 
and concludes that, in the relevant limit, a wave may be thickened by a factor of 
about 2 at the most. The conclusion is therefore reached that atmospheric turbu- 
lence cannot be the cause of the thousandfold discrepancy between the measured 
wave fronts and their Taylor thickness. 

1. Introduction 
The steady waves generated by an aircraft flying supersonically through a 

quiescent atmosphere develop at large distances into a characteristic ‘ N  ’ 
structure. The leading and trailing shocks are separated by a gradual expansion, 
which takes place over a distance of some 50 metres. Experiment (figure I (a), 
plate 1) confirms Whitham’s (1956) predication of this asymptotic wave form. 
The compressive waves, on the other hand, (figure 1 ( b ) )  are of thicknesses one 
thousand times greater than their Taylor (1910) values, so that they are governed 
by mechanisms different from the balance between nonlinear steepening and 
molecular diffusion. The origin of this abnormality has been a matter of con- 
siderable debate. It is true that the wave forms display irregularities of fine 
detail which vary in successive realizations and that there is difficulty in drawing 
firm conclusions from any individual case. (Figures 1 (a) ,  2 (a) and 3 (a) (plate 1) 
are all recordings taken under nominally identical conditions.) However, there 
is little doubt that the compression proceeds at  what is by normal shock stand- 
ards an extremely sedate pace and that there are pronounced irregularities 
(spikes) which distinguish the real event from the simple model. That model evi- 
dently omits significant effects of the real atmosphere and it is both scientifically 
and technologically important to discover what those effects might be. The 
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practical significance arises because the fine structure of a sonic boom seems to 
influence its power of ‘annoyance’ (Rice & Lilley 1969; Rice 1972). 

The irregular spikey structure is now known to originate in the interaction of 
the primary wave with the turbulence it encounters while propagating through 
the atmosphere. Secondary waves are produced by the interaction, and these 
waves are well defined by scattering theory which Crow (1969) used to explain 
the detailed spike structure. It is natural to seek also the cause of ‘shock thicken- 
ing’ in the same effect. Indeed this has been done by several authors though they 
fail to convey the same conviction on this point as does Crow’s explanation of 
‘ spikes ’. 

The subject was really anticipated by Lighthill (1953) when he showed that 
waves would be scattered by turbulence and that the energy of an incident wave 
is attenuated by an amount comparable with that in the scattered field. The 
suggestion that turbulence causes an initially sharp-fronted wave to shed its 
high frequency energy into sharp spikes then seems irresistable. But Lighthill 
warned that this view should be taken with extreme caution because the energy 
arguments were in the stochastic mean, and might only be approximated to in a 
single realization. 

The most determined attempt to relate sonic-boom shock structure to atmos- 
pheric turbulence was made by Plotkin & George (1972). Their perturbation 
scheme steered clear of obvious interpretational difficulties that arise in trans- 
lating the consequences of a statistical theory to an individual realization. They 
took care not to concentrate, as Howe (1971 a) had done when considering waves 
on a random string, on properties established in the stochastic mean. In fact 
they were aware that such mean wave fields lost ‘energy’ without consequent 
rounding of any sharp individual wave. Diffuse mean wave profiles are inevitably 
formed when sharp wave fronts execute random walks about some mean position, 
and in that case it is clearly wrong to associate ‘mean-square’ properties with 
energy, and to invoke energy conservation arguments to demand that the 
incident wave supply the energy of the scattered field. The mean wave analysis 
therefore seems impotent in the search for a wave thickening mechanism, though 
it would be relevant if it  could be established that wave fronts cannot execute 
random walks. That seems to us unlikely. 

There appear then to be three distinct approaches to the turbulent origin of 
wave thickening. 

(i) A scheme based on Lighthill’s (1953) scattering theory with an assumed 
energy conservation between the specific incident wave and the mean rate of 
energy lost to the scattered (spike) field. 

(ii) A reworking of the basic equations to describe properties of the mean 
wave established over many realizations. 

(iii) Plotkin & George’s ( 1972) perturbation scheme that specifically minimizes 
interpretational difficulties consequent on taking a statistical mean. 

Now the remarkable fact is that all these three approaches, emphasizing mean 
properties to apparently different degrees, actually give rise to identical descrip- 
tions of the boom signature. Furthermore, it is now apparent to us that the 
approaches are essentially similar and describe only the stochastic mean wave, 
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and that this mean wave gives only an irrelevant upper bound on shock thick- 
ness. 

The first two schemes are described in $8 3 and 4 of this paper, and are written 
in such a way that they lead to precisely the same equation for wave profile as 
that obtained by Plotkin & George. The reasons for the similarity are also given, 
being basically that since the turbulence is only described in the mean all the 
theories are thereby limited to a specification of mean effects. 

We are therefore led to re-examine the issue of how, and by how much, turbu- 
lence causes wave thickening. The remaining sections of the paper deal with 
this question, but need some introduction to justify the method of attack. If 
the weak shock wave enters the turbulence as a discontinuity, then it will always 
remain a discontinuity. This follows from the hyperbolic nature of the governing 
equations, the discontinuity being a permanent feature of the characteristic 
which it must form (Courant & Hilbert 1962, vol. 11, p. 573). The discontinuity 
can become weak owing to the wave energy being spread over a larger area as 
random turbulent convection generates an increasingly convoluted wave 
surface. The wave propagates (exactly) in accordance with the laws of geometrical 
acoustics. In principle, several weakened rays can converge onto the neighbour- 
hood of a point, giving a seemingly continuous wave profile which is actually a 
succession of discontinuities. This mechanism will ultimately take over in a way 
that Pierce (1971) has already described, and the shock wave will appear to rise 
continuously over the interval separating the arrival times of the first and last 
ray that arrive at any point after following their individual tortuous paths 
through the turbulence. However it seems to us that the time required for this 
process is altogether too long when compared with the time available to the 
shock for traversing the atmospheric boundary layer in which the turbulence 
resides. 

For many rays to converge onto a point, they must be significantly deflected 
from their nominal course. That is, the sharp wave front must become highly 
convoluted from its initial laminar shape, and that of course takes time. We can 
show in fact that the slope of the (still sharp) wave surface remains small during 
atmospheric propagation. The weak discontinuity propagates normal to its front 
a t  the speed of sound relative to the local fluid. This fluid is in turbulent motion, 
so that the wave acquires also this additional velocity, a velocity that includes 
two distinct features. First, the wave is phase shifted as it rides on the back of the 
turbulence. Second, the wave front is rotated, as any fluid element would be, 
by the rotational component of turbulent velocity. Corrsin & Kanveit (1962) 
have shown that the angular velocity of a line element is predominantly due to the 
microscale turbulence and its magnitude is of the order of the root-mean-square 
turbulent vorticity or the ratio of the turbulence velocity u, say, to the rotational 
eddy scale A. In crossing one rotational eddy at  the wave speed c ,  the wave is 
therefore rotated through an angle (u/A)(A/c) or m, the root-mean-square 
Mach number of the rotational turbulence, certainly much less than 
In traversing the atmospheric boundary layer of scale x, the wave encounters 
x /A  independent eddies, so that its accumulated angular displacement 8 is 
m(x/A)t .  Now x is about 103m and A is probably greater than 10 cm so the 
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angular displacement 0 is very much less than unity. This estimate is identical 
with that made by Lighthill (1953) in considering the angular deviation of 
rays in turbulent flow. It also emerges again in the linear theory of the 
energy exchange process which we give in $5 below, the theory being based 
on the constraint that 0 is small so that ray paths remain distinct. The depth 
of the ripples in the wave front can be determined from the slope and the 
ripple scale, which must be identical to that of the eddies that produced them, 
namely A. The ripple amplitude is therefore A times 8, or m(xA)h, which is a t  
most of the order of 20cm. The surface area is thereby increased by a factor 
1 +m2x/A, which is at most about 2, so that the amplitude of the discontinuity 
can vary by this factor also. (The integrated effect, see $ 6 ,  due to propagation 
through the spatially variable atmospheric boundary layer of the earth is actually 
very much less than this.) However, it  cannot be eliminated; this seems t o  us to 
be a. crucial deduction and leads us to say that atmospheric turbulence is  incapable 
of eliminating the discontinuities in a sonic boom. 

The remaining possibility of a significant turbulent thickening of the boom 
therefore rests on the existence of a finite rise time before the wave enters the 
turbulence. This is of course possible owing either to viscosity, or because the 
wave is already dispersed owing to non-equilibrium effects (Hodgson & Johan- 
nesen 1971). We examine this possibility in $6, where we construct an analytical 
scheme based on the slow linear energy transfer out of a wave packet when travel- 
ling through a slowly varying turbulent field. Phase shift effects are specifically 
excluded by the expedient of dealing with spectral properties. We show there 
that turbulence can thicken the shock only to less than about twice its initial 
thickness, so that here again turbulence cannot be responsible for the thousand- 
fold difference between the observed thickness and its Taylor value. 

We are then led to the conclusion that, though turbulence is the undoubted 
cause of spike formation, it plays no significant part in thickening the boom 
structure. Furthermore, we are now aware that the shocks may well be of the 
fully dispersed type and that the real cause of the anomalous behaviour is to be 
found, as Hodgson (1972) advocates, in the non-equilibrium behaviour of air, 
for he has been able to demonstrate that this effect is compatible with the experi- 
mental data. 

2. Equation of sound propagation through turbulence 
Consider a turbulent compressible atmosphere in which c,, denotes the speed 

of sound in the absence of turbulent and thermal fluctuations. When viscous 
diffusion effects are neglected the Navier-Stokes equation can be expressed in 
Lighthill’s (1952) form 

where p is the fluid density, p the pressure and ui the fluid velocity. 
The terms on the right-hand side of this equation describe three distinct 

physical processes. First of all they contain nonlinear components which tend to 
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steepen acoustic wave fronts. Second, there are terms describing the interaction 
of the sound field with the inhomogeneities of the medium, i.e. with atmospheric 
veIocity and temperature fluctuations. These are responsible for the gradual 
distortion and scattering of an incident wave. Finally the right side of (2.1) in- 
volves terms accounting for the generation of sound by the turbulent and thermal 
fluctuations and which function essentially independently of the incident 
acoustic field. We shall actually be concerned with the propagation of sound in the 
atmosphere a t  frequencies which greatly exceed those associated with this 'self- 
sound' of the atmospheric turbulence. It will therefore be assumed that both the 
turbulence and the associated aerodynamic noise fields are 'frozen' during the 
relatively brief time of passage of the incident sound across an eddy. 

Set u2 = q+q, 
where i!& denotes the turbulent velocity fluctuations of the medium, and 6 is the 
velocity induced by the incident sound. Let po and po represent respectively the 
pressure and density in the absence of the incident sound. Then in approximating 
the right-hand side of (2.1) for a weakly nonlinear sound wave and in the limit 
of weak turbulence (i.e. m = U/co < 1, where m is the root-mean-square turbulent 
Mach number) we retain terms which are: (i) quadratic in the turbulent fluctua- 
tions and linear in the acoustic field - representing mean convection effects of 
the medium; (ii) linear in the acoustic field and in the turbulent fluctuations- 
these interaction terms describe scattering; (iii) quadratic in the acoustic field 
and of zeroth order in the turbulent fluctuations- accounting for nonlinear 
steepening of wave fronts. 

Thus the contribution of the term a2(pu%u,)/ax,ax, on the right-hand side of 
( 2 .  I )  remaining after subtraction of the terms which are present in the absence of 
the incident sound is 

with p' = p -po. Similarly, if y denotes the ratio of the specific heats of air, since 
variations during the passage of an incident wave may be assumed to be adia- 
batic, i.e. p/po = (p/po)y, then in the same approximation as above, after sub- 
traction of the steady-state terms, the contribution from the second term on the 
right of (2.1) is just 

(Y - 1) 
c2 - V2(pf)2 + 2c:v2(<pf), 

O 2Po 

where < = (c(x) - co)/co represents the fluctuations in the speed of sound caused 
by the temperature inhomogeneities of the atmosphere. 

Combining these results, and dropping the prime on the acoustic density per- 
turbation, then leads to the following equation of propagation: 

F L M  58 
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Now Grow (1969) has analysed the relative importance of the scattering terms 
in this equation, and deduced that thermal effects normally constitute a small 
correction to the distortion and scattering associated with the turbulent velocity 
fluctuations. We shall therefore neglect the term involving 5 in (2.3). Further, 
the interaction between the sound and the turbulence described by the first 
term on the right-hand side of (2.3) is of second order in the turbulent velocity 
fluctuations. From the following analysis it will - become clear that if t&q. is 
replaced by its mean value (ensemble average) UiU;., then the error involved 
corresponds a t  least to the neglect of a term which is O(m) smaller. Thus we finally 
adopt the following equation as the starting point of the analysis of $5 3 and 4: 

3. Nonlinear theory of the mean sound field 
In this and the following section equation (2.4) is used to study the propaga- 

tion of the mun (or coherent) component of the acoustic field through a turbulent 
atmosphere. That is, we shall develop the analysis labelled (ii) in the introduction, 
The present section is devoted to the derivation of the relevant equations, then 
in 8 4 a detailed comparison of the resulting theory of sonic-boom thickening is 
made with the method based on Lighthill's (1953) investigation, and the recent 
work of Plotkin &George (l972), i.e. with approaches (i) and (iii) of the introduc- 
tion. 

The mean or coherent acoustic density perturbation is defined as the average 
of the field taken over an ensemble of realizations of the turbulent medium, and 
is denoted by p.  In a particular realization a correction p' must be applied in 
order to recover the actual field, so that 

This decomposition applies also to the velocity perturbation &, so that if the 
ensemble average of (2.4) is taken we obtain 

p = P+p'. (3.1) 

For weak sound waves the nonlinear terms in this equation are expected to be 
dominated by products of the mean jield components, which implies that the 
second term in each of the square brackets on the right of (3.2) may be neglected, 
giving 
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The last term on the right-hand side of this equation represents the effect on 
the mean acoustic field of the interaction of the sound with the turbulence. To 
determine the nature of this interaction we proceed in the manner familiar in the 
theory of wave propagation in random media (see, e.g. Howe 1971 a )  and form an 
equation for the random component p‘ by subtracting (3.2) from the full equation 

- a 2  

axi ax, 
+ 2po - {q& + [v, v; - v, V;]). (3  *4.) 

This describes the generation of the random fieldp‘ by the interaction between 
the mean velocity field 6 and the turbulent fluctuations. The terms in square 
brackets represent effects of multiple scattering and nonlinear scrambling. When 
p’ has been determined from this equation it is a simple matter to use the acoustic 
momentum equation in the form 

c? t+qq=-- -  av; av; c; ap’ 

PO axi 
(3.5) 

iteratively to  determine the random acoustic velocity field V ; .  
Actually reference to (3.3) reveals that we do not require a knowledge of V; 

per se, but only of the correlation product U, V;  of the random acoustic velocity 
and the turbulent velocity. Since V;  is itself generated through interactions of the 
mean field with these velocities, it is apparent that the dominant contribution 
to that part of V;  which is correlated with the turbulent velocity fluctuations at x 
will come from those random waves which were initially scattered out of the mean 
$e1d within a correlation distance 1, say, of x. Here 1 denotes the correlation scale 
of the turbulence. Thus provided that the turbulence Mach number is sufficiently 
small, the multiple scattering terms on the right-hand side of (3.4) may be neglec- 
ted, since these then have a minimal effect on the random waves over distances 
of order 1. For the same reason the terms nonlinear in the random field may also 
be neglected. In  other words, when (3.4) is to be used to determine correlations 
such as q V;, all the terms in square brackets on the right-hand side may be 
dropped. 

Of the remaining terms on the right-hand side of (3.4), the second and third 
describe interactions between the random scattered sound and the coherent 
field. When (3.5) is solved iteratively for Y;  and the solution used to determine 
the interaction term V;  of (3.3), these terms may be shown to give rise to con- 
tributions which are quadratic in the acoustic field, but O(m2) smaller than the 
existing quadratic terms on the right-hand side of (3.3). Similarly, the first 
term remaining on the right-hand side of (3.4) would give a contribution O(m2) 
smaller than that due to the final, scattering term involving qq. Thus we finally 
arrive at the following equation : 

- 

- 
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which in conjunction with (3.5) is expected to yield a good approximation to the 
correlation product U, Vj. 

The details of the determination of this correlation product are straight- 
forward, and follow closely the steps given in Howe (1971 b) .  There it is shown 
that the formal substitution of the solution for the correlation product in terms of 
the mean field into (3.3) will result in a nonlinear equation involving the mean 
field alone. This equation may be expressed in the form 

- 

where L is a linear operator determined by the statistical properties of the 
turbulence . 

An explicit form for L is readily derived in the present case of waves short com- 
pared with the integral scale of the turbulence. In  particular, if it is assumed that 
these turbulent fluctuations are isotropic we can show that 

a 2  2 1 ~ 2  a 3  L = - llu2-+-- 
ax; c0 ataxq 

(cf. Howe 1971 b, $7) .  In  this result u2 = +U, U, and the integral scale 1 is defined 
b-v 

where E ( K )  is the energy spectrum of the turbulent fluctuations (Batchelor 
1953, p. 36), i.e. 

%2 = /om E ( K )  dK. 

Thus on substituting into (3.7) we deduce that the mean field satisfies 

a 2  _ _  
(T$J$) + - V2(p2). (3,lO) a2P 21u2 a3p 

~ - c g [ l - l o r n 2 ] V 2 p  = --+Po- 
c,, atax; ax,axj 2Po 

The effect of the random inhomogeneities on the mean field is twofold. The 
first term on the right-hand side of (3.8) corresponds to a reduction in the phase 
velocity below that for propagation in free space, and arises because the inhomo- 
geneities compel the sound to propagate along irregular paths with a correspond- 
ing increase in the travel time between two fixed points. The second term is a 
third-order derivative and causes the mean field to decay. This decay represents 
the natural compensation in the energy balance as the energy content of the 
random, scattered field increases. 

4. Application of the nonlinear mean wave equation to sonic-boom 
propagation 

We now proceed to examine the relationship between methods (i), (ii) and 
(iii) of the introduction for the determination of shock thickness. We shall do 
this by first examining the consequences of applying the mean wave equation 
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(3.10) to the problem of sonic-boom propagation (method (ii)) and then relating 
the result to an analysis based on Lighthill's theory (i) and the prediction of 
Plotkin & George (iii). 

We shall regard the mean profile of the sonic boom as a weak Taylor shock 
(Lighthill 1956) with a pressure jump AFo. If the shock is plane and propagates 
in the positive-x direction. (3.10) reduces to 

where is the x component of 5. 
Now for such a wave we have 

Making this substitution in (4.1) and integrating with respect to x then gives 

the constant of integration vanishing identically because gradients vanish at 
x = -t 00. If the approximate relation p /po  = v /co  is now used to eliminate P in 
the nonlinear term, then we have 

Alternatively this may be expressed in terms of the pressure perturbation 
$i, which is related to p by = c t :  

This is the desired equation for the mean or coherent pressure field associated 
with a plane shock wave propagating through turbulence. Neglecting the small, 
and physically insignificant, correction to the free-space propagation velocity 
we have to a good approximation 

This will be recognized as Burger's equation, familiar in the Taylor theory of 
weak shock waves. That theory involves an identical equation except that here 
the dissipation term on the right-hand side of (4.6) depends on the properties 
of the turbulent scatterers rather than the viscosity of the fluid. A steady shock 
thickness is obtained by balancing the diffusive spreading of the wave produced 
by this term against nonlinear steepening. 

It is an easy matter to solve (4.6) for a monotonic weak shock profile. The 
method of solution is well known and is discussed in considerable detail by Light- 
hill (1956) for the case of shocks controlled by viscous dissipation. Following 
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precisely Lighthill’s analysis we deduce a steady-state ‘thickness ’ 6 of the mean 
shock wave based on the maximum slope: 

6 = 16ypoh2/(y + 1) AP0. (4 .7)  

We must be careful not to confuse this thickness of the mean shock with the 
mean thickness of the actual shock. When the shock propagates through the tur- 
bulent atmosphere it is naturally propagating through a medium whose typical 
scales of variation are very much larger than the thickness of the shock. This 
implies that it should propagate according to the laws of geometrical acoustics. 
Consequently the actual position of the shock executes a random walk caused by 
the convective turbulent velocity fluctuations about the position the shock would 
have attained had it been propagating in free space. 

Now the rigorous theory of geometrical acoustics (Courant & Hilbert 1962, 
p. 573) predicts that an initially discontinuous wave front will remain discontinu- 
ous. In  spite of this an abrupt pressure jump averaged over the random walk 
gives an apparently thick mean wave front. Analytically this ‘thick’ average is 
caused by the diffusive nature of the scattering term on the right-hand side of 
(4.6)  and casts serious doubts on the ability of that equation to describe in 
even a remotely approximate manner the properties of an individual realization 
of the wave field. 

Let us now observe that when the nonlinear term in (4 .6 )  is neglected, a har- 
monic wave of the form p = exp {i(kx - wt) ]  would satisfy 

I w = c0 k - ilU2k2/Co, 

p = exp { ik(z  -cot)  - Zu2k2t/co). 

Since the intensity I ,  say, of the mean wave is proportional to P2) this implies bhat 

the differentiation following the motion of the wave at  the speed of sound. This 
agrees exactly with the result obtained by Lighthill (1953) in his treatment of 
turbulent scattering of high frequency sound, and as such apparently con- 
stitutes a basis for determining shock thickening (method (i) of the introduction). 
To do this one merely inverts the argument leading to (4.9).  That equation may 
be taken to imply the existence of a small negative imaginary component in the 
frequency w of a harmonic wave, as in (4.8)) accounting for the slow exponential 
decay of the wave due to scattering. This may then be incorporated into the 
Navier-Stokes equation (in which turbulent velocity fluctuations are omitted) 
by the simple formal expedient of replacing a/& by a/at - (lu2/co) a2/ax2, a pro- 
cedure which would then lead to precisely equation (4 .6) ,  and to a shock thick- 
ness identical with (4 .7 ) .  

However, Lighthill warned against interpreting the dissipation implied by 
(4.9) as a genuine energy loss because the result is derived only in the stochastic 
mean, and is probably only approximated to in a single realization. 

Consider next the determination of shock thickening undertaken by Plotkin 
& George (1972; method (iii) of the introduction). By means of a double parameter 
expansion procedure based on the shock strength and the root-mean-square 
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turbulence Mach number, Plotkin & George arrive at essentially the following 
equation for the pressure perturbation : 

(4.10) 

Actually P denotes the pressure perturbation from which the first scattered 
‘spikes’ have been excluded, so that it hopefully represents a smoothed-out 
(but not averaged) wave profile. On the right of (4.10) 9? denotes a linear 
operator which accounts for the interactions of this pressure field with the 
turbulence, and which therefore depends on spatial location and the particular 
realization of the turbulence. Because it is generally not possible to determine 
9 precisely, but only its statistical properties, Plotkin & George argue that 
provided a solution is sought only over distances which are large compared with 
the integral scale 1 of the turbulence, it  is permissible to replace 53 by its ensemble 
average {B), say. In  this way they deduce that 

9 N (9) 2: (zu21co) a2Iax2, (4.11) 

and so arrive at  precisely equation (4.6) for the propagation of the mean wave and 
thence to the prediction (4.7) for the steady-state shock thickness. 

To understand why Plotkin & George should obtain precisely the results 
derived from the mean wave equation, it is interesting to note that to some extent 
their analysis was anticipated by Lighthill. In  the appendix of his (1953) paper 
Lighthill determines the second scattered acoustic field and shows that it is cor- 
related with the incident wave in such a manner that it just compensates for the 
energy loss from the incident field to the first scattered waves. Thus in calculating 
the mean rate of energy dissipation of P, the wave field less the first scattered 
‘spikes’, one obtains precisely the mean effect on the incident wave - a second- 
order effect - coinciding exactly with the mean wave analysis, since the ‘ spike ’ 
field is actually dominated by the random walk anomaly. 

We conclude therefore that there is a basic identity between the apparently 
distinct methods (i), (ii) and (iii) of the introduction. It has been argued that the 
turbulent-induced random walk of the wave front dominates the scattered field 
in the high frequency limit associated with a shock wave (strong forward scatter); 
in other words in an individual realization practically all of the scattered sound 
actually propagates in the same direction and at the same speed as the incident 
wave. This implies that in these circumstances the mean or coherent wave can 
in no way approximate to the properties of a particular realization of the field; 
the energy content of the mean wave certainly decays according to Lighthill’s 
formula (4.9), but because it  relates only to the mean wave it should be regarded 
essentially as the decay of the coherence of the wave front and not of the energy 
content of the actual wave. 

5. Linear theory of acoustic energy exchange processes 
From the material of the preceding sections we conclude that it is highly un- 

reasonable to regard the thickness of the mean shock wave as being truly repre- 
sentative of the thickness of individual realizations of a shock propagating 
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through turbulence, and that calculations based on methods (i), (ii) and (iii) of 
the introduction result in equally fallacious predictions of that thickness. Actu- 
ally (4.7) shows that the mean wave thickness depends critically on the size of 
the integral scale of the turbulence, which in the atmospheric boundary layer is 
of the order of 100 metres or more. Most investigators will instinctively feel that 
coarse grain features of turbulent motions, which determine the integral scale 
1, cannot possibly participate in what is after all a delicate balance between local 
nonlinearities and dissipative mechanisms. Even if large-scale features were 
responsible for some of the attenuation, it can reasonably be argued that smaller 
scale motions would be more efficient in affecting the wave, if only because there 
would then be a very much smaller mismatch between interacting length scales. 

Now in an examination of single-scattering theory applied to an ideal shock 
wave propagating through turbulence Crow (1969) was able to separate the first 
scattered field into two distinct components. The first was interpreted as a phase 
shift which accounts for the Iocal variable velocity of propagation of the incident 
wave caused by turbulent convection. The second component was much smeller 
in magnitude and was regarded as the genuinely scattered sound. It appears, 
therefore, that a rational theory of sonic-boom thickening by turbulence must 
be capable of taking account of these physically distinct contributions to the 
scattered field. Plotkin & George (1972) recognized this difficulty, but were 
unable to formulate a mathematically tractable programme to extract the true 
intensity of the scattered sound. 

I n  this section we examine the propagation of short sound waves through 
turbulence in terms of a theory of multiple scattering proposed in a companion 
paper (Howe 1973), with a view to effecting this separation. In that paper an 
integro-differential kinetic equation is derived for the mean-square Fourier 
coefficients of waves propagating in inviscid turbulence. If a t  position X and 
time T the acoustic energy in the wavenumber range (k,dk) is denoted by 
&(k, X, T) dk per unit volume, then Howe shows that asymptotically as the 
turbulence Mach number m tends to zero d(k, X, T) satisfies 

x [&(K)-&(k)]S(K2-k2)dK, (5.1) 

where Qij(k) is the spectrum of the turbulent velocity fluctuations, which is 
defined as the Fourier transform of the spatial velocity correlation tensor 
(Batchelor 1953, p. 26). Since the spectrum function is proportional to u2 
equation (5.1) can be shown to imply that changes in &(k, X, T) due to scattering 
occur over distances and times which are of order 1/m2, i.e. over distances which 
are generally large when compared with the extent of the wave form. It is in this 
sense that &(k, X, T) can be considered to depend independently on the ap- 
parently conjugate variables k and X. That is, the space and time variables X 
and T are really ‘slow’ variables, and we may regard the Fourier representation 
of the wave field in terms of the wavenumber vectors k as being valid locally in- 
side boxes of dimension AX, say, which is small compared with the distances 
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X ( N ( l/rn2)) over which significant changes occur in the amplitudes of the wave 
components, yet large compared with a typical wavelength of the field. 

To interpret thesignificance of the term on the right-hand side of (5.1) observe 
that the integration with respect to K extends over the whole spectrum of 
acoustic waves. That part of the integrand associated with b ( K )  in the square 
brackets contributes a net influx of energy into the element (k, dk) of wavenum- 
ber space due to scattering from all other waves of energy G(K)dK per unit 
volume. Similarly the second term in the square brackets gives the rate of Zoss 
of energy from (k, dk) because of scattering into all possible other wave modes 
(K,dK). Note that a t  K = k the term in square brackets vanishes identically, 
i.e. there is no net gain or loss of energy, and corresponds to the elimination of 
phase shift from the energy balance. Finally, the presence of the delta function 
implies that, since, as before, the turbulence is assumed to be frozen, interacting 
acoustic waves must have the same frequency. 

Now when the acoustic wavelength is much smaller than the correlation scale 
2 ofthe turbulence, the main contribution to the integral in (5.1) is from the region 
near K = k (cf. Lighthill 1953). Hence that integral may be evaluated approxi- 
mately by expanding &(K) about K = k. Carrying the expansion to second order 
then reduces the integro-differential equation to the following diffusion equation 
for the distribution of acoustic energy in wavenumber space : 

V2, b(k) .  
ab(k) + a&(k) c,m2k2 
aT 'ax,,- 2A 

-- 

In  this equation the following notation has been adopted: X , ,  is the space co- 
ordinate parallel to the wavenumber vector k; V2, denotes the two-dimensional 
Laplacian operator in wavenumber space in the plane normal to k. The Eength 
A is given in terms of the energy spectrum E ( K )  of the turbulence by 

and is of the same order of magnitude as the Taylor microscale (Batchelor 
1953, p. 47). Actually it has been implicitly assumed in deriving (5.3) that the 
turbulence is locally isotropic. However, it  will be clear that A is really determined 
by those wavenumber components of the turbulence which are large compared 
with those of the energy-containing eddies; in fact significant contributions to  
the integral come only from eddies within the inertial subrange and the viscous 
dissipation range. These are usually thought to be essentially isotropic, so that 
the approximation leading to (5.3) is perhaps not unduly restrictive. 

The quantity which will be of significance in the ensuing discussion is the 
scattehg dijfusivity p', defined by 

p' = 2m2/A. (5.4) 

In the practical problem of sonic-boom propagation both m and A will vary with 
position in the atmosphere, but over distances which may be assumed large 
compared with the spatial extent of the wave form. 
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Now (cf. Howe 1973, $ 7 )  using relations given in Batchelor's (1953) mono- 
graph, it is an easy matter to deduce that the integral in (5.3) can be alternatively 
expressed as an integral involving the longitudinal correlation function f ( r ) ,  viz. 

Also, if D(r) = [u(r,,) - u(rO + r)12 is the longitudinal structure function, then 
it is known that for distances within the inertial subrange 

D N K&rP (5.6) 

(Tatarski 1961, pp. 27-58), where e is the mean rate of dissipation of turbulent 
kinetic energy by viscous stress and K is a dimensionless universal constant 
2: 1.9 (Crow 1969). For smaller values of the separation distance r ,  smaller than 
the Kolmogorov scale (v3/e)t, Y being the kinematic viscosity, we have instead 

D E er2/15v. (5.7) 

There is no theoretical link between the forms (5.6) and (5.7) of the structure 
function at intermediate separations, so that, following Crow (1969), we formally 
adopt the interpolation formula 

where 

The actual form of the structure function would not be expected to deviate 
significantly from (5.8). 

If we now observe that 
af 1 a 0  - =--- 
ar 2u2 ar ' 

then the integral expression (5.5) for A becomes 

1 = $Jam A a0. dr,  
r ar 

and using the formula (5.8) we deduce that 

(5.10) 

(5.11) 

(5.12) 

The convergence of the integral (5.11) for the interpolation formula (5.8) may 
generally be regarded as confirming the conjecture that A is determined essenti- 
ally by the eddies contained within and beyond the inertial subrange. The recent 
measurements of u and 6 undertaken in the lower atmosphere by Sheih, Tennekes 
& Lumley (1971) indicate that A is typically of the order of 10-15cm. 

Consider next the following initial-value problem associated with the diffu- 
sion equation (5.2). At time T = 0 a plane wave enters a region of turbulence at 
X = 0 which extends from X = 0 to X = CO, and proceeds to propagate in the 
positive-X direction. Let k, = (ko, 0,O) denote the incident wavenumber, then 
with respect to a suitable system of units, we may set 

4 k )  = w, - k,) W,) W )  (5.13) 
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a t  T = 0 ,  where k, is the wavenumber component perpendicular to the x axis. 
In  (5.13) the function 6 ( X )  merely implies that the extent of the wave packet is 
small compared with the distance over which significant changes in the properties 
of the wave profile occur, in other words, that the spatial extent of the wave may 
be regarded as contained entirely within a 'box ' of dimension AX. 

The full solution of (5 .2)  subject to this initial condition is difficult because of 
the dependence of the derivatives on the direction of propagation (i.e. on k). 
However, for sufficiently small propagation distances an approximate solution 
can be obtained on the assumption that the angular divergence of the wave 
packet caused by scattering as it propagates through the turbulence is small, 
so that, in particular, the derivative a/aX,, may be approximated by a/aX. 
The appropriate solution is then easily derived by Fourier analysis and may be 
expressed in the form 

(5.14) 

where the angular divergence 8 is measured from the positive-X direction to  
the direction of propagation k. 

The dimensionless quantity p ( X )  is the integrated scattering diflusivity : 

(5.15) 

the integral being along the path of propagation of the wave. In  the atmospheric 
boundary layer the scattering diffusivity ,uf = 2m2/A generally varies with posi- 
tion, but as mentioned above, the length scale associated with its variation is 
usually large compared with the linear extent of the wave profiles to be considered 
below. Note that the validity of the solution (5.14) requires that the integrated 
scattering diffusivity p ( X )  be small. 

It is a relatively simple matter to extend this solution to cover more general 
initial wave energy spectra. Suppose that at  T = 0 

Jw) = G(kJ m,) W), (5.16) 

where, without loss of generality, and for waves propagating initially in the posi- 
tive-X direction, it may be assumed that G(kx)  is non-zero only for kx > 0. Then 
the subsequent development of the spectrum due to propagation through the 
turbulence may be derived by convoluting (5.16) with the elementary solution 
(5.14). In  this manner we find that for T > 0 

(5.17) 

This result, illustrating the lateral divergence of the acoustic wave, will be used 
in the next section to study sonic-boom thickening. 



476 J .  E .  Ffowcs Williams and M .  S. Howe 

6, Linear theory of turbulent shock thickening 
In order to avoid the difficulties associated with the analyses of shock thick- 

ness discussed in § $ 3  and 4, we now propose an alternative definition of thickness 
which specifically excludes spurious contributions due to possible phase shift 
effects. 

Let p(x, y, z, t )  denote the pressure perturbation associated with a shock propa- 
gating nominally in the positive-x direction. Then if the shock has strength AFo, 
we define its thickness 6 by 

where the overbar denotes an average taken over an ensemble of realizations of 
the turbulent field. 

To see that this is a reasonable definition note first that, because it involves 
an integration in the nominal direction of propagation, the exact location of the 
shock is not important, i.e. all effects of phase shift are automatically excluded. 

It may be argued, however, that an unconscionably large contribution to the 
integral in (6.1) comes not only from the wave front but also from the presence 
of spikey irregularities of the wave profile caused by propagation through the 
turbulence (see figures 1 (a) ,  2 (a) and 3(a)) .  Actually this cannot be the case 
since on average the effect of the turbulence must be to smooth out any irregulari- 
ties, and initially the only irregularity is that due to the abrupt pressure rise a t  
the wave front. Alternatively, observe that 

where J(X,t>5,C) = 13(X+f,Y,z , t )13(x+5,Y,Z, t ) .  (6-3) 

The function I ( x , t , ( , c )  may be regarded as a correlation coefficient relating 
points on the wave profile a distance 1E-5) apart, and is necessarily smooth, 
in the sense that the spikey irregularities, although contributing on an average 
to the form of the function, do not involve it in violent fluctuations. When 6 and 
5 are both small continuity ensures that I ( x ,  t ,  5, 5 )  approximates to the mean- 
square pressure perturbation distribution. That distribution is clearly smooth 
and effectively uniform except in the vicinity of the wave front where there is a 
rapid but smoothrisein theoverpressurefromzero. In  fact figure 1 (b) ,  for example, 
shows that considerable shock thickening can occur without the presence of a 
significant field of spikey irregularities. 

The definition (6.1) involves the co-ordinates y and x transverse to the nominal 
wave front; they may be eliminated by averaging over an area AYAZ of the 
shock front, where, in accordance with the discussion of 3 5, AY and A 2  are 
large compared with the characteristic ‘ripples’ of the shock front. Of course, if 
the turbulence were homogeneous and isotropic then the co-ordinates y and z 
would not appear in the integral of (6.1). 

Further, since (ap/ax)2 tends rapidly to zero away from the shock front, the 
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range of integration in (6.1) may be restricted to a region of the x axis of length 
A X ,  say, within which the integrand is non-zero. Thus we may now set 

where the integration is taken over a ‘box’ of volume AX = A X A  Y A Z  containing 
that portion of the wave profile in which (a~/ax)~ is non-zero. 

To determine the value of this integral express the wave prose in the form of 
a Fourier expansion 

valid within the box A X ,  so that 

p(x) = a(kn, t )  et%ax (6.5) 
n 

Thus squaring and integrating with respect to x over the volume of the box and 
taking the ensemble average yields 

since the functions exp (ik. x) are mutually orthogonal within the box. 
But, la(kn, t ) j2/Ak is proportional to the mean energy per unit volume of 

the spectral component of wavenumber k,, which may be denoted by d(k,), say. 
Suppose that the shock wave enters the turbulence a t  time T = 0,  then initially 
we may set 

and the evolution of the energy spectrum can be determined by the method of 
the previous section. 

I @ ,  0) 1 = G ( k , )  S(k,) S ( X )  Ak (6.8) 

- Thus we have SAX (g)2 dx = / k ; € ( k )  AXdk. 

Using the solution (5.17)) we have, correct to the order of approximation implied 
by that solution, 

- j , g ) 2 d x  = S(X - coT) A X  A Y A 2  
w - 0 )  

Now the delta function on the right specifies the location of the box A X  under 
consideration, so that 6 ( X  - coT) A X  = 1 for that box. Hence carrying out the 
integrations gives 

Substituting into (6.4) we obtain 

(6.11) 

(6.12) 
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However if 6, denotes the initial thickness of the shock on entering the turbu- 

lence, then 6, = (A9 o)2/Jom k2G(k) dk ,  so that, for small p ( X ) ,  we finally have 

s = &,[I +p(X)I. (6.13) 

In  particular, if &o = 0, this implies that, at least over distances for which the 
approximate solution (5.17) remains valid, the shock thickness is vanishingly 
small. 

Let us now apply this result to sonic-boom propagation through the atmos- 
pheric boundary layer. The turbulent motions of the lower atmosphere generally 
extend to a height of about lo5 em. Following Crow (1969) we shall suppose that 
the atmospheric boundary layer behaves approximately like a wind-tunnel 
boundary layer under a uniform free stream. This permits the turbulence dissipa- 
tion function e to be expressed in a universal form 

6 = u3,S;l W(y/d*), (6.14) 

where u, is the f r ic t ion velocity and is equal to the square root of the ratio of the 
surface stress to the air density. The altitude 8, is the height at which the wind 
speed is 99.5 yo of its free-stream value; y is the distance measured vertically 
from the ground, and W(y/6,) is a universal function known from wind-tunnel 
data. 

Now from the definition (5.15) and the expressions (5.9) and (5.12) we have 

(6.16) 

the integration being from f = 0, where the shock enters the boundary layer, 
to 5 = X .  It is convenient to express this result as an integral over the vertical 
height y, and to extend the path of integration down to ground level in order to 
take account of the full effect of the atmospheric boundary layer. For an aircraft 
moving supersonically a t  Mach number M ,  the appropriate transformation for an 
observer immediately below the flight path is dc = - Mdy/(M2 - l)+, so that if 
h = y/S, then 

wherern, = u*/co. 
Now using data taken from Bradshaw, Ferris & Atwell (1967) for the case of a 

wind-driven boundary layer under zero pressure gradient, we can estimate that 

j o l W ( h ) m  ?! 9.5. (6.17) 

Hence, by evaluating the remaining constant terms in (6.16) we finally deduce 
that 

(6.18) 

It is now clear that in all cases of practical interest the integrated scattering 
diffusivity p* is small. Typically the friction velocity u* N 30-100 em s-l (Lumley 
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& Panofsky 1964, p. 100; Sheih, Tennekes & Lumley 1971), and rarely exceeds 
150 em s-1. The boundary-layer thickness 6, 2: 105cm and v = 0.15 cm2 s-l. 
Thus for a supersonic aircraft such as Concorde ,u* is typically of order 10-2-10-1 
with a maximum value of about 0.3. 

Hence the formula (6.13) derived above implies that propagation through the 
turbulent atmospheric boundary layer apparently produces a t  most an increase 
of about 30 yo in the sonic-boom rise time ! 

7. Conclusions 
We have shown that the two departures in practical measurements of the sonic 

boom from ideal quiescent flow theory have essentially different causes. Namely, 
though the spike structure is generated by an interaction of the boom with 
the turbulence it encounters in passing from the aircraft to the ground the 
anomalous shock thickening cannot be caused by turbulence. 

The earlier work suggesting turbulence to be the cause of wave thickening is 
shown to describe only properties of a wave established in the stochastic mean, 
and presents an irrelevant upper bound on wave thickness. We have then shown 
that the distance travelled by the boom through turbulence is too small to cause 
any turbulent thickening of an initially discontinuous pressure signal. But turbu- 
lence can thicken a boom with initial finite rise time by, at  most, a factor of about 
2. Turbulence cannot therefore be the cause of the one thousandfold discrepancy 
between practical measurements of boom thickness and the Taylor value. 

In view of the now known tendency for weak shocks to attain a fully dispersed 
profile owing to  non-equilibrium gas effects, and the demonstration that these 
effects are consistent with practical measurements (Hodgson 1972)) there seems 
no remaining mystery regarding the boom’s ‘anomalous ’ structure. 

This work was conducted under Rolls-Royce sponsorship as part of their pro- 
gramme on the interaction of turbulence with sound. The recordings of the sonic 
boom were kindly provided by the Royal Aircraft Establishment, Farnborough. 
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